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We present results on the Swendsen-Wang dynamics for the Ising ferromagnet 
in the low-temperature case without external field in the thermodynamic limit. 
We discuss in particular the rate of convergence to the equilibrium Gibbs state 
in finite and infinite volume, the absence of ergodicity in the infinite volume, and 
the long-time behavior of the probability distribution of the dynamics for 
various starting configurations. Our results are purely dynamical in nature in 
the sense that we never use the reversibility of the process with respect to the 
Gibbs state, and they apply to a stochastic particle system with non-Gibbsian 
invariant measure. 
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I N T R O D U C T I O N  

In this pape r  we cont inue  our  analysis  of the S w e n d s e n - W a n g  dynamics  
for the fe r romagnet ic  Ising mode l  (see, e.g., refs. 1-3)  in the low-tem-  
pe ra tu re  regime, which was begun in refs 4 and  5 in co l l abo ra t ion  with 

E. Olivieri  and  E. Scoppola .  The  SW algor i thm,  a pa r t i cu la r  r a n d o m  
clulster  dynamics  reversible with respect  to the G ibbs  state of  the Ising 
model ,  is based  on the F o r t u i n  Kas te leyn  (6'7/ r epresen ta t ion  of the Ising 
model ,  and  i t  has  the advantage ,  with respect  to the usual  single-spin-fl ip 
G l a u b e r  dynamics ,  of upda t ing  in a very efficient way  the conf igura t ions  on 
large scales. The a lgor i thm works  as follows: s tar t ing from a conf igura t ion  
a, we cons t ruc t  a new conf igura t ion  a '  in two steps: 

(i) F i r s t  we cons t ruc t  the " b o n d  conf igura t ion"  {7(b)}, b =  (x, xr), 
I x - x ' l  = 1, as follows: a b o n d  (x, x ' )  is defined to be "vacant , "  
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(ii) 

7(b) = 0, if a(x) ~ a(x'); if a(x) = a(x'), then the bond {x, x'} is 
defined to be "occupied," 7(b)= 1, with probability 1 -  exp(-/~) 
and "vacant" with probability exp(-/~), /~ being the inverse 
temperature. 

Then, given {7(b)}, we consider the connected sets of sites C, 
called "clusters," in the graph whose edges are the occupied 
bonds b. The second step consists in updating simultaneously all 
the spins in every cluster C. The updating is such that all the 
spins in C become either + 1 or - 1 with equal probability, inde- 
pendently for each cluster. Homogeneous boundary conditions 
(b.c.) may be taken into account by imposing that the clusters 
which are connected to the boundary cannot flip and must 
preserve the same value of the spin as the boundary (e,g., + 1). 

A more detailed construction of the SW algorithm is given in 
Section 1. 

The above algorithm was introduced Swendsen and Wang (1) in order 
to reduce or even completely eliminate the critical slowing down that 
greatly hampered Monte Carlo simulations of critical phenomena in 
ferromagnetic systems of statistical mechanics such as Potts models. Their 
initial ideas were further developed and improved by a number of people 
(see, e.g., ref. 8 and references therein) and made available for models 
different from the original ones, such as plane rotators (9) or completely 
frustrated systems. (1~ 

This type of stochastic algorithm (known as stochastic cluster algo- 
rithms) ,proved to be very efficient from the numerical point of view (see, 
e.g., ref. 11), and, because of the greatly reduced computer time, allowed 
very detailed studies of the statistical properties of the "physical" clusters of 
the Ising model. (12/ 

From a theoretical point of view and in connection with numerical 
simulations, the central point of this subject is to study the critical behavior 
of the dynamics. Unfortunately, very little is known rigorously on this 
difficult problem, with the exception of a rigorous lower bound on the 
dynamical critical exponent z obtained by Li and Sokal. (13) However, if one 
is interested in a rigorous analysis of purely nonequilibrium phenomena, 
such as the way equilibrium is approchad, metastability, or large deviations 
from equilibrium, then the SW turns out to be a very interesting model of 
random dynamics for which it is possible to develop new ideas and tech- 
niques that can be applied also to different contexts. For example, ref. 4 
successfully discussed the approach to equilibrium in a finite but arbitrarily 
large volume at low temperature and in the presence of a small positive 
external field, by means of a novel multiscale analysis in space-time 
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borrowed from statistical mechanics of disordered systems. (~4~ When 
boundary conditions were opposite to the external field, the dynamics was 
shown to exihibit metastable behavior, i.e., starting from the "wrong" 
phase, equilibrium was reached through homogeneous nucleation of 
droplets larger than a critical one of the "right" phase. This transition was 
analyzed in detail in ref. 5, where the existence of the critical droplet was 
shown together with sharp bounds on the tunneling time. A similar study 
for the more conventional Metropolis algorithm was carried out at the 
same time by Jordao-Neves and Schonmann. (15~ 

We stress here that the presence of an external field in the results of 
ref. 4 was absolutely crucial, since it allowed the use of expansions similar 
to low-temperature expansions of equilibrium statistical mechanics in order 
to have a rough control of the size of the clusters evolving in time, and 
therefore of the speed with which information propagates through the 
system. A very interesting question is therefore what happens at zero 
external field and low temperature. A zero-temperature analysis shows 
immediately that in this case the SW dynamics is very different from a 
single spin dynamics. In fact, for a traditional single-spin algorithm like 
Metropolis with plus boundary conditions in a box of side L in 2 dimen- 
sions, a spin configuration starting from all minuses will become identically 
equal to plus only in a time of order L 2, by a kind of erosion mechanism 
starting from the boundary of the chosen box. On the contrary, in the SW 
dynamics, the same configuration will flip to all pluses in a time of order 
one. Actually, one easily proves (see the discussion after Theorem 2.1) that 
any initial configuration will reach equilibrium, i.e., all pluses, in a time of 
order log(L). This fact suggests that also the low-temperature behavior, 
e.g., equal site time correlations at equilibrium, should be different between 
the two dynamics. 

To this purpose, we recall that there is a very convincing argument by 
Huse and Fisher (16~ (see also Sokal and Thomas (~v~) predicting a stretched 
exponential [exp(-x/- t ) ]  convergence to equilibrium in two dimensions 
for the Metropolis algorithm, essentially based on the observation that 
large clusters of the wrong phase survive for a very long time (proportional 
to their area) under the dynamics. For the SW dynamics, however, big 
clusters of the wrong phase, which are therefore not attached to the 
boundary, can be flipped in a single move even without external field. 
Thus we conjecture that the SW dynamics should approach equilibrium 
exponentially fast in time. Although we are not able to. prove this here, we 
show that the convergence is faster than exp ( - t  ~) with ~ = ln(2)/ln(3). 

A second very interesting question concerns the behavior of the 
dynamics in the infinite volume Z a. In this case the associated Ising model 
exihibits a phase transition, and a nontrivial problem is to study the limit 
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(if it exists) as t tends to infinity of the probability distribution of the 
dynamics at time t. For the usual Glauber dynamics, such as Metropolis or 
heath bath algorithms, absence of ergodicity is proved using the attractivity 
of the dynamics and the reversibility with respect to the Gibbs measure. 
Attractivity is equivalent to saying that for any time t, if f ( a )  is an 
increasing function of the spin configuration a, then the expected value of 
f over the configuration at is an increasing function of the starting con- 
figuration. This fact, toghether with reversibility, is sufficient to prove, for 
example, that, starting from all pluses, the expected value of the spin at the 
origin will always be greater than or equal to the magnetization in the plus 
phase (# +), while starting from all minuses, the same average will always 
be smaller than or equal to the magnetization in the minus phase # .  

If the temperature is below the critical point, there is spontaneous 
magnetization and therefore the system is no longer ergodic. It is, however, 
well known that it is very difficult to prove this result by purely dynamical 
methods, i.e., without using the atractivity and reversibility of the 
dynamics, and, to our knowledge, no rigorous results are available in this 
direction. A notable exception is represented by the beautiful work of 
Toom on stochastic cellular automata. (18) 

For the SW dynamics the situation is in some respect more complicate 
than for a Glauber dynamics, since attractivity no longer holds and a 
detailed analysis of the dynamics in unavoidable. 

As it will become clearer in the sequel, in order to be able to give even 
a partial answer to the above questions, one is forced to have a good 
probabilistic control on the occurrence during the time evolution of long 
paths of vacant bonds. In ref. 4 this control was achieved through the 
external field h, since each vacant bond at integer time corresponds to a 
spin opposite to the field. In the absence of the magnetic field the situation 
is much more complicated, since now a given path of vacant bonds may 
resist for a long time t with probability (1/2)'. Therefore one cannot hope 
to get, uniformly in the starting configuration, estimates on the probability 
to observe at time t a path of vacant bonds of length L starting from a 
given site x, which are exponentially small in L, as is the case for the Gibbs 
state at low temperature, unless t is much larger than L. On the other 
hand, it is a central point of our strategy to think of the dynamics on a 
given length scale L as being built up by many local dynamics on a smaller 
length scale L'~. L evolving in time more or less independently one from 
the other. This picture is of course valid only if "information" in the system 
has not been able to travel in the given time scale t a distance L'. This fact 
impliers that, even with a bounded velocity of "propagation of informa- 
tion," length scales should be larger than time scales. 

In this paper we provide a first solution to the above problems, 
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certainly not the optimal one, for the SW dynamics by means of a multi- 
scale analysis which avoids completely any kind of Peierls argument and in 
general any a priori knowledge about the equilibrium Gibbs measure. This 
last feature of our approach is in our opinion the most important one, 
since it allows us to treat other models of interacting particle systems which 
do not have a Gibbsian invariant measure. This is the case of the model 
introduced in ref. 19 in dimension d~>2 which will be discussed in 
Section5. As pointed out by Lebowitz and Schonmann, (2~ invariant 
measure of nonequilibrium statistical mechanics should generically be 
expected to be non-Gibbsian. 

The paper is organized as follows: In Section 1 we define precisely the 
dynamics. In Section 2 we prove the basic estimates on the probability of 
having long paths of vacant bonds and we show the existence in the infinite 
volume of an infinite cluster starting from a homogeneous configuration 
(all spins = +1 or -1 ) .  In Section 3 we study the rate of convergence to 
equilibrium in a finite volume. In Section 4 we give a dynamical proof of 
the existence of aphase transition. In Section 5 we briefly discuss the 
application of the techniques to another model of an interacting stochastic 
particle system with a non-Gibbsian invariant measure. 

1. C O N S T R U C T I O N  OF T H E  D Y N A M I C S  A N D  N O T A T I O N  

We start by constructing the dynamics with + boundary conditions in 
a finite subset of the d-dimensional cubic lattice Z a. We first introduce the 
notation. 

(i) A will denote a generic finite subset of Z a. Given a pair of sites 
x a n d  y i n Z  a ,wese t  

6(x, y)= rxi- yil 
i = l . . d  

d(x, y ) =  max [xi-Yi[ 
i = l . . d  

diam(A)= sup 6(x, y) 
x , y ~ A  

The distance between two sets A, B, denoted by d(A, B), is given by 
minx~A.y~B d(x, y). 

(ii) The unordered pair b in Z a, b = (x, y), with ~(x, y) = 1 is called 
a bond. A* is the set of all bonds (x, y) such that either x or y or both 
belong to A. The set of all bonds in Z a will be denoted by Z a*. 

(iii) G ~ { -  1, 1}A denotes a generic configuration of plus or minus 
spins in A. 
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(iv) CA is the family of all "geometric clusters" C in A = {x; 3b e A*; 
xeb}.  A geometric cluster C is a subset of Z a which is connected in the 
following sense: Vx, y e C there exists a chain of nearest neighbor sites in 
C connecting x to y: 

x 1-..xn: x l = x ,  x n = y ,  6 (x i+ l ,x  i ) = l  i = l , . . . , n - 1  

(v) Given a geometric cluster C, we define the "outermost bound- 
ary" of C as the set of sites x not in C such that there exists a nearest 
neighbor of x in C and there exists a chain of nearest neighbors sites 
X l ,  X 2 , . . .  , X u in A\C, with xl = x  and Xur  , where 0A = {xe_~\A}. 

(vi) A collection 7 -  {bl, b2 ..... bn} of bonds in A* is called "a path 
of bonds containing x" iff x is the endvertex of one of the bonds bi and the 
distance between the endvertices of two consecutive bonds (as a set of two 
sites in Z d) is not greater than one. The length of the path 7, ]71, is set 
equal to diam(V(7)), where V(7) is the set of endvertices of the bonds 
{bl, b2,..., b,}. 

Now, given A, let vb and ~(C) be numbers in {0, 1} associated to 
each bond and to each geometric cluster C e CA, respectively. Given the 
numbers Vb and ~(C), we construct out of a configuration a a new 
configuration 0' as follows. From a we first generate a configuration 7 of 
occupied [7 (b )=  1] and vacant [ 7 ( b ) = 0 ]  bonds, by setting 

where a b = a(x) ~(y) if b = (x, y) and or(x) = +1 if x e OA. The configura- 
tion 7 can be identified as the subset of the occupied bonds in A*. Some- 
times in order to denote the configuration (and the corresponding subset 
of A*) 7 obtained starting from ~r, we use the symbol 7~ (7~ depends of 
course on the numbers Vb). We will say that two n.n. sites (x, x ')  are 
connected in the bond configuration 7 if 7(x, x ' ) =  1, i.e., the bond (x, x ')  
is occupied in 7. The maximal connected components C (with respect to the 
configuration 7) are called "7-clusters" or more simply clusters. They are of 
course in particular geometric clusters and may reduce to a single site. 

For  a geometric cluster C which is also a 7-cluster we often write 
C c 7~. Now for any C c p~ we set 

~ ' ( x ) = l  V x e C  

a ' ( x ) = - i  V x e C  

if either ~(C) = 0 or C c~ OA ~ 

if ~(C) = 1 and C c~ ~?A = 
(1.1) 
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Let us now consider two sequences of numbers 

that we think of as the realization of two mutually independent processes 
with values in {0, 1} each of which is a collection of independent 
identically distributed random variables (i.i.d. rv) with distribution 

v b = 0 with probability e x p ( - f i )  

v b = 1 with probability 1 - exp( - fl) 

and Bernoulli distribution with parameter 1/2 for the ~(s, C). 
Given co, we finally construct a random flow on { - 1 ,  1} A, 

{~b,~'~ N by applying at each time step t the rule (1.1) with numbers 
%(t), ~(t, C). Sometimes, for notational convenience, we will write 

a~(x) = oA'~ (1.2) 

Sometimes for notational convenience we will say that some event E occurs 
at time t + 1/2 if E depends only on the random variables 7(b) constructed 
from the configuration ~bA'~ using the random variables Vb(t ). 

Remark 1. (i) The boundary condition + 1 at the boundary of A is 
taken into account by the condition that any cluster C touching c3A is set 
equal to + 1. Other boundary conditions may be considered, e.g., periodic 
or open. 

(ii) Notice that if A ' c A ,  then one can compare the random flows 
~b A'~~ ~b A''~ as follows: given a in A, one constructs 6 in A' by the rule 

6(x) = a(x) if x e A' 

6 ( x ) =  +1 if x ~ 0 A '  

The evolutions ~b~'~ and ~b~"~~ are constructed by means of the same 
random numbers (vb(t), ~(t, C)) if b and C are in A'. However a cluster C 
intersecting ~?A' is set equal to + 1 for the dynamics ~b~': ~ but may be - 1  
for the dynamics ~b, A'~. This observation will be exploited in a crucial way 
in Section 3. 

It is easy to see that the above-defined dynamics satisfies the detailed 
balance condition for the Gibbs state of the Ising model on A, with + 
boundary conditions on ~?A, at inverse temperature ft. The proof of this 
statement can be found, for example, in refs. 1 and 4. 

822/66/5-6-5 
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2. T H E  BASIC  E S T I M A T E  

In this section we will establish a basic estimate on the probability of 
having a path of vacant bonds l-i.e., with the associated random variables 
?(b) equal to zero] of length L containing a fixed point x at a given time 
t, with t greater than some time scale t(L) related to L. Such an estimate 
will play a crucial role in establishing the results of the subsequent sections. 
For simplicity we will discuss only the two-dimensional case; the result, 
however, holds also in higher dimension. Let us first fix some notations. 
For  any integer k we define: 

(i) L k = 4  k2. 

(ii) tk = 3 k. 

(iii) A L ( x ) = { y ~ Z 2 ; d ( x , y ) < < , L } , A L = A L ( 0 ) , A k = A L ~ .  

(iv) Given Ac with L > L k ,  we denote with the name (k, +)-  
dynamics in A/; the algorithm described in the previous section with the 
following extra condition: 

~(s, C) = 0 if diam(C) > L~ 

(v) s x,t,k, ~ will denote the event that there exists at time t + 1/2 a 
path of vacant bonds in Z 2. of length n >~ Lk containing x for the dynamics 

k in Ac with + b.c. starting from a. OL, x,t,k, ~ will denote the same event, but 
computed for the (k, +)-dynamics in AL starting from a. 

(vi) pk=supL>~Lk;x~AL;t>~tk;~{_l,l}ALmax(P(Oc,x,t,o) ' p k (OL, x,t,~,~)). 
For  convenience and whenever this will not lead to confusion, we will 

O h denote with P(L, x, t, k, a) either P(c.x, , ,k.~))  o r  P(OL,  x, tg, k,a)) without 
specifying the dynamics for which it is evaluated. Then we will prove the 
following result: 

T h e o r e m  2.1. There exists flo > 0, c > 0, ko > 0, and a > 0 such that 
for any fl >/fl0 there exists a positive constant m(fl) with m(fl) >1 c such that 

1 
Pk ~< Lg---- ~ exp[ - m ( f l ) 2  k] Vk > ko 

Before proving the theorem, it is important to understand the case of 
zero temperature, fl = oo. In this case no bond is made vacant during the 
dynamics and the only possibility to observe a path of vacant bonds at 
time t + 1/2 is that the same path was already present at any previous time 
including t = 0. The probability of this last event is bounded from above by 
(1/2)'; however, if the path under consideration separates exactly two 
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different clusters at time t = 0, then the above bound becomes exact. This 
discussion suggests that any bound on Pk will be at most exponential in the 
time scale tk with rate constant m(fl) at most equal to ln(2) and in 
particular that to obtain a rigorous bound on Pk by means of some kind 
of Peierls argument should be a very difficult task, since the number of 
paths grows exponentially fast on the length scale Lk >> tk. 

One should at this point be puzzled by our choice of the length and 
time scales (Lk >> t~), since the above arguments seem to indicate that time 
scales of the same order as the length scales should be more appropriate. 
As will appear clear in the course of the proof, it is a central point of our 
strategy that if the dynamics starts from a configuration with paths no 
longer than Lk and at a later time tk a path longer than Lk+ 1 is present, 
then there are at least two pieces of it, each of length greater than Lk, that 
have been created independently one from the other. A proof of this fact 
requires, however, that time scales are much smaller than length scales 
(more precisely: tkL~ ~ L~ + 1). 

The actual result, although it is sufficient for our purposes, is unfor- 
tunately much weaker than the naive guess made on the basis of the above 
discussion, since it is only an exponential of ,~ln2/ln3) A substantial ~k 

improvement seems to require new ideas. 

Proof. For fl large enough we will show that the quantity Pk+l "on 
scale k + 1" can be estimated in terms of the same quantity "on scale k" Pk 
by 

- ~ ( 2 . 1 )  Pk + 1 <~ Lk Pk 

for a suitable positive constant a independent of k and ft. If (2.1) holds and 
iff~ 2a = Lk Pk, then, by explicit computation, 

fk +1 ~<f2 (2.2) 

provided k i> 5. Thus 

f ,  ~< (fk0) 2k-k~ (2.3) 

for any ko ~> 5, i.e., using the definition of fk, 

1 
k0 k 0 / 

Pk~kafLZap ]2k ko (2.4) 

Therefore the theorem follows with m ( f l ) = - 2  k~ ) provided 
that 

lira 2a (Lk0 Pko) < 1 (2.5) 
f l ~  

for some k o ~> 5. 
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To prove (2.5), we first observe that using the Markov property of the 
dynamics, we have 

Pk = sup P(L, x, tk, a) (2.6) 
L>~Lk;xEAL;r (-- 1,1}AJ 

Moreover, for fixed L and fixed a e  { - 1 ,  1} AL and x in AL we have that 

P(L, x, tk, a)<~ r2 , ~(-~)•  f2 [!~tk, (2.7) L~k0 tk0 c T a-'Ko\2 ] 

The rhs of (2.7) is in fact a rough upper bound of the probability that at 
least one of the L20 bonds b at distance from x smaller then or equal to Lk0 
either was made vacant nat some time s +  1/2 smaller than tk0 [i.e., 
v(b, s + 1/2)~< e - s ]  or that a s ( b ) = - 1 ,  Vs<<. tko. It is easy to check that 
indeed the rhs of (2.7) is smaller than 1 if k0 is taken large enough and fl 
is large enough depending on ko. We are therefore left with the proof of the 
basic recursion inequality (2.1). Using (2.6), it is sufficient to estimate 
P(f2L, x, tk+~,k+ 1,a), computed either for the dynamics with + b.c., of for the 
( k +  1, +)-dynamics in AL, with the rhs of (2.1) uniformly in L > L k + I ,  
x ~ AL, and in the initial configuration a. Thus, let us fix L >1 Lk+ 1, x E AL, 

~ { -- 1, 1 },L, and one of the two dynamics in AL and let us introduce the 
auxiliary event f2~: 

f21 = {there exists y in A L with d(y, x) <<, Lk+ 1 and s in [tk, 2tk] 

such that at time s + �89 there exists 

a path of vacant bonds in Z 2. of length n ~> Lk containing y } 

R a m a r k  1. If f2~ holds, then it holds also at integer times 
s~ [tk, 2tk]. This follows by the simple observation that the number of 
vacant bonds at time s is always smaller than or equal to the same number 
at time s + 1/2. 

Then we write 

P(ff~L,x, tk+l.k+ l , a )  = e(ff2L, x, tk+l,k+ 1,a O ~'~1) + P(f2L, x, tk+l,k + ~,.  c~ ~ )  

(2.8) 

where g?~ denotes the complement of ~ .  Using again the Markov property 
and the definition of Pk, we estimate the first term in the rhs of (2.8) 
uniformly in x, L, ~ by 

tkLz+~P~ (2.9) 

In fact, if in the event f2L, x, tk+t,k+ ~.~ n f21 we also fix the site y and the time 
s E Etk, 2tk] entering in the definition of t21, then we are examining a sub- 
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set of the event that there are two paths of vacant dual bonds each one of 
length greater than Lk, one at time s + 1/2 containing y and the other at 
time 3tk+ 1/2 containing x. Since both s and t k + ~ - s  are greater than t~ 
and L ~> Lk+ ~ > Lk, we can use Pk and the Markov property to obtain the 
estimate P~ for the probability of this last event. The factor t~L~+~ takes 
into account the number of choices of y and s. 

We now turn to the estimate of the second term in the rhs of (2.8). For  
simplicity we first describe the estimate for the case x = 0. After that we will 
explain the (trivial) modifications which are necessary in order to consider 
the general case. 

Def i n i t i on  1. Given integers L and l<~L, we set 

A L_ l= {x e Ac; dist(x, ~AL) ~>/} 

D e f i n i t i o n  2. (a) Let 

31 = m i n { s >  tk; 3y~ALk+~_l~ ,k~tk 

such that at time s + �89 there exists a path of vacant 

bonds in Z 2. of length n ~> L~ containingywhere l~ = 4t~L~} 

(b) Let y~ be the leftmost and uppermost of the site y's appearing in 
the definition of the random time r~. Then we set 

32 = min{s >~ ~ ;  3y ~ AL,+, (~_,k)t~ with d(y, y~) >>- (s + 2 - r~)l k 

such that at time s + �89 

there exists a path of vacant bonds in Z 2. of length n >~ Lk containing y } 

For  convenience the leftmost and uppermost of the sites y's appearing 
in the definition of r2 will be denoted by Y2. 

Remark2 .  (i) By direct computation we have that tkl~= 
Lk+ ~(9/16) k and therefore tkl~ ~ Lk+ 1 for k large. 

(ii) If the event OL, x=O,~k+~.~+l.~C~g2 ~ holds, then z~ >2tk and, more 
important, z2~< 3tk. In fact, necessarily zl ~ 3t~, since otherwise for any 
time s between 2tk and 3tk + 1/2 the path of vacant bonds containing x = 0 
would have length smaller than Lk, which is impossible because of 
g2L.x=o.,k+~.k+~.,. In fact, if the site Yl defined above is such that 
d(yl ,  O)>>-lktk, then again z2> 3t~ would imply that the path of vacant 
bonds starting from x = 0 at time 3t~ + 1/2 has length smaller than Lk. The 
same occurs if d(y~, O) <~ tklk and 32 > 3tk, since Lk+ 1 >> tklk. 
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We will therefore estimate P(s x 0.,k+l,k + 1.~ C~ s by 

P({2tk <~ T, <~ r2 <<. 3t,} C~f2~) 
3tk 3tk 

<~ E E E E P({'Cl=s1;Yl=X1;'c2=s2;y2=x2}r~sQ~) 
Sl =2tk s2~s1 xleAk+l x2EAk+l 

(2.10) 

From here the discussions are restricted to fixed ~1, %, Yl, Y2 without 
notice. The main idea to estimate the rhs of (2.10) is to show that, due to 
the condition expressed by s and by the definition of r~ and of %, the 
paths 71 and ~2 of vacant dual bonds with length greater than L~ starting 
at times sl and s2 from Xl and x2, respectively, have been created by the 
random dynamics starting from the configuration o-,~ independently one 
from the other within the time intervals [tk, Sl] and l-tk, s2]. If this is the 
case, then each term in the sum (2.10) can be estimated by p2 and the 
theorem follows. In order to carry out this program, we first prove two 
simple geometric results on the structure of the configuration o-t for t ~< r2. 

Let A~+ 1 denote ALk+~-  (s- tk) lk ,  and let Ai be the square Atk(Yi), 
i =  1, 2. We also denote by Cs(x) the cluster containing the site x at time 
s + 1/2. 

I . e m m a  2.1. For  any s such that tk~<S<r~ there exists a cluster 
denoted C~(1)  with the property that its outermost boundary does not 
intersect A~+I and such that for any x~A~+ 1 only one of the following 
two possibilities holds: 

(1) diam(C,(x))<Lk. 

(2) C~(x) coincides with C~(1).  

Lemma 2.2. For  any t k ~ S < T  2 there exists a cluster denoted 
C~(2)  with the property that its outermost boundary does not intersect A 2 
and such that for any x e A 2  only one of the following two possibilities 
holds: 

(1) diam(C~(x))<Lk. 

(2) Cs(x) coincides with C~(2).  

Proof of Lemma 2. 1. Let us first show that for any s < rl  there must 
exist in A~+ 1 a site x such that diam(C,(x))>Lk. In fact, if for some 
s ~< ~1 - 1 and any x ~ ASk+ 1, diam(Cs(X)) < Lk, then necessarily there exists 
a site xo in A~+~ such that at time s there exists a path of vacant bonds 
in Z 2. of length n ~> Lk containing x o. This fact is of course in contradiction 
with the definition of x~. 
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Let us now fix x~ASk+l and let us assume that diam(Cs(x))>Lk. 
Since s < rl ,  the outermost boundary of Cs(x) cannot intersect the box 
A;+~. We then take as C~(1) the cluster Cs(x). It remains to show that 
if y~A;+ 1 is any other site such that diam(C,(y))>L~, then C~(y)= 
C~?~(1). This is quite clear, since the outermost boundary of C~(y) cannot 
intersect A;+I  and therefore it must coincide with the outermost boundary 

oo 1 of C,(x)  = c~. ( ) .  

Proof of Lornma 2.2. Let us fix s < r  2. Then any site x inside 
the box A 2 is at distance from Yl greater than or equal to 
(% - rl + 2)l~ - lk >~ (s -- zl + 2)lk. Therefore, by the definition of ~2, the 
longest path of vacant bonds at time s + 1/2 containing x and intersecting 
the box A2 has length smaller than Lk. Thus, the same proof of Lemma 2.1 
applies with the box A;+ 1 replaced by the box A 2. 

R o m a r k  3. (i) It is clear that the cluster Cs i =  1,2, may 
coincide with the cluster of the boundary of the chosen box A L. 

(ii) If the dynamic s under consideration is the (k + 1, +)-dynamics 
in AL and if the diameter of C~ ~> L~+ 1, then necessarily the sign of C~? ~ 
will be plus. 

(iii) By construction, the outermost boundary of C~?~(1) cannot 
intersect the boxes A~, i =  1, 2, for s < rl .  

The next step consists in establishing a coupling between the dynamics 
as inside the boxes A~ and the (k, +)-dynamics in A~, for s~[t~,~i], 
i =  1, 2. For this purpose, given a site x inside AL~+l--~k, given So s [tk, 3t~-], 
and given a realization ~o of the basic random variables {v(s, b)},~ E,~,3,~j, 
{~(s,C)}~E~,3,kj, we define in general t/~ ~'s~ as the evolution of the 
configuration a,k inside the square Ate(x) with the following new set of 
basic random variables: 

(1) ~(s, C ) ' =  {~(s, C)+~(s, Cs~)} mod2  if S<So, if diam(C)<~L~ 
and if C is strictly contained inside Az~(x). Here C~, if it exists, is the 
unique cluster C for the true dynamics as evolving with the given realiza- 
tion co starting from a~k, with the property that is outermost boundary does 
not intersect At~(x ) and such that for any yeAts(x) only one of the 
following two possibilities holds: 

(i) diam(Cs(y))<L~. 
(ii) C~(y) coincides with C. 

If C~ does not exist, then ~(s, C~) is set equal to one. 

(2) ~(s,C)'=~(s,C) if s>~so, if diam(C)~<Lk and C is strictly 
contained inside Ark(x). 
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(3) ((s, C)' = 0  otherwise. 

(4) v(s, b)' = v(s, b). 

R e m a r k  4. It is very important to realize that, given x and So as 
above, the distribution of the new random variables {~(s, C)'} is again 
Bernoulli with parameter 1/2 for those clusters C such that the diameter of 
the cluster C is smaller than L k and C~Atk(x) ,  so that the probability 
distribution of the new evolution t/~ T M  coincides with the distribution of 
the (k, + )-dynamics inside Ate(x) with starting point ate. This fact depend 
in a crucial way on the fact that the probability distribution of the random 
variables ~(s, C) is symmetric [P(~(s, C ) =  + 1 ) =  P(~(s, C ) =  0 ) =  1/2]. 

Let now assume that the realization co was such that Zl =s~, z2=s2, 
yz = x z ,  and y2=x2,  and let us compare the true evolution as with the 
evolution r/~ ~''s~) as defined by the above rules inside the squares A~. We 
have the following important result: 

L e m m a  2 .3 .  Let s ~< s~ and let b = (x, y )  be a bond in A~ such that 
d(b, OA~) >~ 2sLk. Then 

q~x"~')(b) = try(b) 

ProoL The proof is by induction and it is the same for i = 1 or i = 2. 
Let us assume that the result of the lemma is true up to time s with 
s +  l~<si, and let us show that it holds also at time s +  1. From the 
inductive hypothesis, at time s + 1/2 the bond variables inside the box 
Al~_2st~(x~) for r/ and a are equal. Therefore, if b =  (x, y) is as in the 
hypothesis and the clusters Cs(X) and Cs(y) computed for as. have diameter 
less than Lk, then necessarily they must coincide with the clusters of x and 

~(x,,s~)t~,~-a ~ by construction. y computed for ,sn(X"S~)'. in this case '~+1 w ) -  ~+~w~ 
If C~(x) and Cs(y) computed for as both have diameter greater than 

Lk, then, by Lemmas 1.2 and 212, they must coincide with C~; on the 
other hand, again by the inductive hypothesis, the clusters of x and y 
computed for q~ also must have diameter greater than Lk. Therefore, in this 
case, by construction, ,(x,s~th~_ ,~ 'ts+l , ~ , - ~ s + l ( b )  = l .  

The last case, when only one between C~(x) and C~(y) has diameter 
less than Lk, follows by a similar reasoning. 

R e m a r k  5. It follows immediately from the above lemma and from 
the fact that 2siLk ~ lk/2 that at time si + 1/2 for the new dynamics r/~ x''si) 
there exists a path o f  vacant bonds of length at least Lk containing xi. For  
notational convenience we will denote this last event by f27k ..... ,-,k" 
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Using the above remark, we can finally estimate the generic term in 
the sum in the rhs of (2.10) by 

P({T1 = S i ;  Yl = X l ;  "/72 : $ 2 ;  Y2 =X2}  ('1 ~ 1 )  

~<P((2~ ~ ,  ~ c~s (2.11) 
k,. l, 1, t k lk,X2,S2,at k)  

Since d(x l ,  x 2 ) >  2lk, the two dynamics r/~. xi's~), i =  1, 2, are clearly inde- 
pendent and therefore, using Rermark4, the r.h.s, of (2.11) can be 
estimated by p2, which gives the estimate 

2 4 2 (2.12) t kLk  + 1 Pk 

for the rhs of (2.10). 
If we combine now (2.9) with (2.12), we get that 

2 2 4 2 P(~QL, x=O, tk+t.k + ~,c~) ~ ( tkLk  + 1 + t kLk  + 1)Pk (2.13) 

As we have already anticipated, the same estimate can be obtained also for 
x r  In this last case all the steps that led to the estimate (2.12) are 
unchanged except that now the square A~+I has to be replaced by 
Ak+l (X)CSA L and the same for A~+ 1 and Ai. 

Thus, the basic recursion inequality (2.1) is proved with, e.g., a - 1 8  
and the theorem follows. 

Before closing this section, we would like to comment about our 
particular choice of the boundary conditions ( + )  for the two dynamics 
involved in Theorem 2.1. Our choice was not at all essential for the result 
to hold and other b.c., such as open or periodic ones, can be accom- 
modated as well. In these cases the proof is unchanged provided that one 
defines the quantity P(L,  x, k, a) appearing in the definition of Pk as the 
largest of (1) the probability that there exists at time t + l / 2  a path of 
vacant bonds in Z 2. of length n >~ Lk containing x for the dynamics in AL 
with the chosen b.c. starting from a and (2) the same quantity computed 
for the (k, + )-dynamics in A L starting from a. 

Rather interesting for later applications are the (p, 1 -  p)-b.c, defined 
as follows: all the clusters which touch the boundary of AL are part of a 
unique cluster, called the boundary cluster, which is set equal to + 1 with 
probability p and to - 1  with probability 1 -  p. In this case the random 
variable r C2)  may have Bernoulli distribution with parameter p, as 
well as Bernoulli distribution with parameter 1/2, del~ending on whether 
the cluster C~ touches the boundary of A L or not. In both cases the 
random variables ~co'(s, C) will be distributed according to the Bernoulli 
distribution of parameter 1/2 and the proof will remain unchanged. 

There are, however, limitations that come from those b.c. that 
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naturally produce already in the Gibbs state long paths of vacant bonds, 
such as the (+ ,  - )  b.c. in two dimensions (i.e., + b.c. in the upper half- 
plane and - b.c. in the lower half-plane of Z2). The proof in this case 
breaks down and the reason is that the analog of estimate (2.7) no longer 
holds. In fact, a given bond b may remain vacant for a long time with large 
probability if its endpoints belong to two different boundary clusters 
pinned to opposite sign by the b.c. It seems, however, that if one modifies 
the definition of P(L, x, t, k, a) in such a way that one considers only those 
paths that do not intersect the long path which joins the opposite side of 
A c separating the plus phase from the minus phase, then the technique 
illustrated above can be applied again. 

Also, the case of an external magnetic field parallel to the b.c. could 
be accommodated as well, but it was not included in our discussion, since 
this case was already successfully discussed in ref. 4. 

From the above proof and particularly from the discussion made right 
after the theorem it appears that the main reason for connecting length 
scales with time scales comes from taking in the definition of the quantity 
Pk the supremum over all possible initial configurations, since for starting 
configurations with many paths of vacant dual bonds (e.g., a chessboard 
configuration) it takes a long time to become more regular and to look like 
a typical configuration of the equilibrium Gibbs state. This suggests that if 
we start already with a "regular configuration," then the probability of 
having a long path of vacant dual bonds at time t.should decay fast enough 
in the length of the path already for short times. There is, however, a 
problem to solve since in the course of the proof of the theorem and 
particularly in the estimate of the first term in the rhs of (2.8), we made use 
of the Markov property due to the fact that in the definition of Pk we took 
the supremum over a. Thus the following result becomes rather interesting. 
Let P~- be defined as 

P [  = sup sup P(L, x, t, k, + ) (2.14) 
t L > L k  

where + denotes the configuration identically equal to plus one. Then we 
have the following result. 

T h e o r e m  2.2. The exists flo > 0, c > 0, and a > 0 such that for any 
fl/> fl0 there exists a positive constant mo(fl) with mo(fi)>>-c such that 

1 
P~ ~< 77; exp[-mo(f l )2k] ,  Vk 

Lk 

Proof'. Let k o and c be given by Theorem 2.1 and let mo(fi) be given 
by mo(fi) = �89 2c, where the constant m(fl) is as in Theorem 2.1. The 
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above estimate on P~- is clearly true as fl ~ ~o for k < ko. For  k ~> ko, in 
analogy with (2.1), we will prove that 

2a +)2 (2.15) P~++l ~<Lk (P~ + exp[ - -m( f l )  2k+1] 

where ' the  constants m and a are as in Theorem 2.1. As in the proof of 
Theorem 2.1, it is easy to see that the result follows from (2.15) with, e.g., 
if for some fixed kl ,  e.g., kl = ko, we have 

1 
P ~  ~< ~ exp[  - m0(fl)2 k'] 

~ k l  

This inequality is certainly true as fl--, oe, since we start with a configura- 
tion with no vacant bonds. Thus we will concentrate on the proof  of the 
above modified recursion inequality. 

Let us consider P(L, x, t, k + 1, + ) with L > L~ + 1 fixed and x = 0 for 
simplicity. If t > tk +1, then by Theorem 2.1, 

P(L, x, t, k + 1, + ) ~< exp[  - m ( f l ) 2  ~ + 1)] (2.16) 

If instead t ~< tk+ 1, then, following the proof  of Theorem 2.1, we define the 
random rimes zl and 72 2 as follows. 

D e f i n i t i o n  3. (a) z l=min{s~>0 ;  3yeAck+, s~k such that at time 

s +  1/2 there exists a path of vacant bonds in Z 2. of length n>L~ 
containing y}, where lk = 4tkLk. 

(b) Let Yl be the leftmost and uppermost  of the sites y's appearing 
in the definition of the random time r~. Then we set 

r 2 = min{s >~ zl; 3y ~ ALk+ 1 - sl~ with 6(y, Yl) >~ (s + 2 - r~)lk 

such that at time s + i there exists a path of 

vacant bonds in Z 2. of length n >~ L~ containing y} 

For  convenience the leftmost and uppermost of the sites y's appearing in 
the definition of z2 will be denoted by Y2. 

It is easy to see, following the same arguments explained in Remark 2, 
that necessarily 

P(L ,x=O, t , k ,  +) 

~< P('cl ~< ~2 ~ t) 

Z 2 2 
S l ~ t  S2~Sl Xl~Mk+l x 2 ~ A k . I  

P({~'I =s1; Yl =x1;  ~'2 =$2; Y2 =x2}) 

(2.17) 
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In order to estimate a generic term in the sums in (2.17), we proceed 
exactly as we did for the estimate of the rhs of (2.10) and obtain the same 
result as in (2.11), (2.12): 

. = ( p + ~ 2  ( 2 . 1 8 )  P({~l=s1;Yl=Xl,"c2=s2;Y2 x 2 } ) ~  - - k  J 

that is, the bound 

2 4 2 (2.19) tk+lLk+lPk 

for the rhs of (2.17). If we now combine (2.19) together with (2.16), we get 
(2.15) and the theorem. 

R e m a r k  6. Exactly as for Theorem 2.1, the result of Theorem 2.2 
applies also for the SW dynamics with different boundary conditions, e.g., 
open periodic or (p, 1 - p )  b.c., which do not induce by themselves a long 
path of vacant bonds in the corresponding Gibbs state. 

We conclude with a rather standard application of the above result to 
thne problem of the existence of an infinite cluster containing the origin for 
the SW dynamics on the full lattice Z d. Of course, on the whole lattice Z d 
we need to give a prescription for the updating of cluster of infinite size. We 
decide to choose the (p, i - p )  rule, which corresponds to setting an 
infinite cluster equal to + 1 with probability p and to - 1  with probability 
1 - p .  Thus, the (1, 0) rule should correspond to the + b.c. in the finite 
volume. It is easy to check that the result of Theorem 2.2, being uniform in 
the volume, applies also to the infinite-volume case with the (p, t - p) rule. 
Then we have the following result. 

C o r o l l a r y  2.1. There exists flo < oo such that for any fl > rio there 
exists c(f l )e(0,1)  with l ima+ :oc ( f l )= l  such that for any value of 
p e  [0, 1], if r/(x)= 1, V x s Z  a, then: (a) We have 

P,(diam(C?(0))  = +oo) >~ c(//) Vt 

where C , ( 0 )  denotes the cluster containing the origin at time t +  1/2 for 
the dynamics starting from ~/in Z a with the (p, 1 -  p) rule. 

(b) For any time t there exists a unique infinite cluster with P--  1. 

Proof. (a) For any/~ we estimate P , (d iam(C2(0) )<  + m )  by 

P~(3b e A~; b is vacant at time t + �89 

+ ~ P ,  (there exists a path of vacant bonds of length L > Lk 1 
k>/~  

containing x, for some x in Ak) (2.20) 
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The first term in (2.20) is bounded by 

(2L~)a[(�89 ~+ (e ~)fl] 

If t > fl and by (2L~)afle -~ if t ~<//, while the second term is small for large 
/~, by Theorem 2.2. Thus (a) follows. 

(b) If at time t there exist more than one infinite cluster, then there 
exists a path of vacant bonds of infinite length. That is excluded by 
Theorem 2.2. The existence with P = 1 of one infinite cluster is assured by 
(a) and by the ergodicity of the probability distribution at time t. 

3. RATE OF CONVERGENCE TO EQUIL IBRIUM IN 
A FINITE V O L U M E  

In this section we discuss the implication of our basic result, 
Theorem 2.1, for one of the most important problems of Monte Carlo algo- 
rithms, namely the rate of convergence of the probability distribution of the 
random dynamics at time t as t--. oo to the equilibrium measure given by 
the Gibbs state in a finite but large volume A. Thus, let us fix a box of 
side 2L centered at the origin A t ;  let f :  { - 1 ,  1}AL~R be an arbitrary 
observable; and let pA~L(f) and E ~ f ( ~ t )  denote the expected value of 
f with respect to the Gibbs state in A L with + b.c. and to the SW 
dynamics with + b.c. at inverse temperature/3, respectively. Then we will 
prove the following result: 

T h e o r e m  3.1. There exists /~o< oo and c > 0  such that for any 
/~ >/~o there exists a positive constant m(/?) with m(/~) > c such that for any 
t > t (L)  = exp[ ln(3)( ln(L) / ln(4))  1/2 ] 

sup I # L ( f ) -  E , f ( a , ) l  ~< 2 I f [ ,  exp[ -m( /~)  t ~ ] 
o* 

where c~ = ln(2)/ln(3) and ]fl ~ = sup~ [f(a)[. 

Before proving the theorem, it is important to understand the reason 
for the restriction on the time: t > t ( L ) .  In a finite volume at zero 
temperature the equilibrium measure is totally concentrated on the plus 
configuration; moreover, any initial configuration after a time of the order 
In(L) also becomes identically equal to plus one. More precisely, 

sup P ~ =  ~)(at(x)  :# 1 for some x) ~< (2L)d(�89 t 
dr 

It is also easy to check that for certain anomalous initial configurations 
(e.g., a chessboard configuration) the above upper bound becomes almost 
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exact. Thus, equilibrium is only reached after a time of the order of the 
logarithm of the volume. At very low but positive temperature the result of 
Theorem 2.1 proves that any configuration after a suitable time becomes 
almost one in the sense that with large probability a given site x connected 
to the boundary of the chosen box; however, due to our choice of the time 
and length scales, the upper bound on the time necessary for this to happen 
is not logarithmic in the volume, but only of the form expressed in the 
theorem. 

Proof of Theorem 3.1. The proof follows very closely the pattern of 
the proof of the same result given in ref. 4 for the SW dynamics with an 
external positive field. Let p(L, t) be defined by 

p(L, t) =- sup P(rlt ~ at) (3.1) 
o-,~/ 

where ~/, and at are coupled together in the sense that r/t = ~bAL'~ and the 
same for a, where co is the same realization of the random variables 
{v(s, b)} and {~(s, C)} for both. The quantity p(L, t) is in some sense a 
way to measure the memory of the dynamics of the initial condition. It is 
in fact easy to see that (4) 

sup I#A+(f ) -  E,f(at)l ~< 2 Ifl ~ p(L, t) (3.2) 

Thus, it will be sufficient to prove 

p(L, t)<~expE-m(fl)t ~] Vt> t(L) (3.3) 

Following ref. 4, the above inequality will be proved by means of a multi- 
scale analysis similar to that involved in the proof of Theorem 2.1. Let the 
length and time scales Lj, 0 be as in the previous section: Lj = 4 j2, tj = 3 j. 
Then we will set 

& =  sup max{p(L,  0), p(L, tj, ( + , j -  1))} (3.4) 
(Lj<~ L < Lj+ I) 

where p(L, t(+, j - 1 ) )  is the same quantity as p(L, t) but computed for 
the ( + ,  j -  1)-dynamics in AL. It is quite simple to relate p(L, t) to pj for 
suitable j. To this purpose, let, for a given integer L, k =- k(L) be such that 
Lk<~L<Lk+I and let for any integer t, n(t)=[t/tk]; then, using the 
Markov property, we obtain 

p(L, t) <<. (pk) n(') (3.5) 
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Therefore the theorem follows if we can show that 

pj ~< exp[ - m ( / ? ) U ]  (3.6) 

for any j large enough, where m(fl) is a suitable constant uniformly 
bounded away from zero for all large enough/~. 

The basic inequality (3.6) will in turn follow from the usual recursive 
inequality 

Pj+I ~< (2Lj+ 2)dp 2 + exp[ - m'(/~)U] (3.7) 

provided that for some finite Jo, PJ0 is small enough. That is certainly true, 
since for finite J0 and sufficiently large/~ the dynamics Eor the ( + ,  Jo - 1 )- 
dynamics] is undistinguishable from the dynamics at zero temperature. 

Thus let us prove (3.7). To this end, let us fix one of the two dynamics 
[-i.e., the usual SW dynamics with + b.c. or the (+ ,  ])-dynamics] in the 
box AL, L 6 [Lj+ ~, Lj+2]; let us fix two arbitrary initial conditions t /and 
o-; and let us introduce the event f20 defined by 

Qo = {there exists x 6 AL such that either 
~;, + A;, + q~3~j,t~ (qt~)(x) r rl3~i(x) or ~3~,,: (o-~j)(x) r a3~(x) or both} (3.8) 

where A) ~ is the unique box of side 2Lj inside AL containing x and maxi- 
mizing the distance of x from the part of its boundary not contained in the 

A) ~ + 
boundary of AL, and ~0,,,j (qtj)(x) denotes the (+ ,  j - 1 ) - e vo lu t i on  in the 

time interval It], 3tj] in the box Aj  of the restriction to the box A~ of the 
configuration tt~:. It is most important to outline that the random flow 

Af+~  . 053,j,,j~- ) is coupled to the random flow qSA,~.,j( ) (see Remark 1, Section 1) 

because they use the same sequence of random variables {v(s,b)}, 
{~(~, c ) } .  

With the even ~2o so defined, we write 

P(q,j+l r a,j+~) -- P(Q;  c~ {qtj+l r o',j+~ }) + P(g20) (3.9) 

The event appearing in the first term in the rhs of (3.9) is contained in the 
event that for some x in AL, 

A;, + o~A;, + 

Thus, using the Markov property and the definition of Pi, we get 

P(g2~ c~ {qtj+l ~a a,j+~}) ~< (2L)dp 2 (3.10) 
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It remains to estimate the probability of t'2o. What we will prove below 
is that the event f2 o implies that for some s e Its, 3tj], r/s has a cluster 
not connected to the boundary of AL of diameter greater than Lj_I .  The 
probability of this last event, which we call f2~, is estimated, using 
Theorem 2.1, by 

P(f21) <<. 2(2ts)(2L ) a exp l- - m(/3) 2 j -1  ] (3.11) 

for/3 large enough. 
It is clear that (3.6) follows from (3.9), (3.10) if we take m'(/3)=m(fl) /2 

and j > Jo with Jo large enough independently of/3. 
Thus we are left with the proof of the inclusion 

t'2o c D1 (3.12) 

Lemma3.1. If for any x in A L and any s in [tj, 3tj], 
diam(C,(x)) ~< Lj_ 1, then 

A f ,+  
(I)3tj, tj (?~t j ) (X)  = t]3tj(X ) (3 .13)  

Proof. The proof is similar to Lemma 2.3 and it is by induction. For 
simplicity, we only discuss the case where x coincides with the center of the 
box A~; the other case require only minor geometric modifications to the 
argument. 

Let us assume as induction hypotheses that 

x + 

@~',~ (tb)(y) (3.14) 

for any y inside Aj x - 2(s - t j)Lj 1 and let us show that it propagates also 
to s + 1. Let y be given inside A j -  2(s + 1 - ts)L j_ 1; then from the induc- 
tive hypothesis, at time s +  1/2 the bond variables inside the box 

A ~ - 2 ( s - t j ) L j _ l  for ~/s and ~A].+ -~.,j (tl,s) are equal. Therefore, if the cluster 
C~(y) computed for t L, has diameter less than Lj 1, then necessarily it must 

A f,  + coincide withx the cluster of y computed for 45,, (r/,) and in this case 

t L + ~(y) = cbj,,~ + (q , ) (y )  by construction. If diam (Cs(y))  > Lj_ 1, then it 
must touch the boundary of Ac; on the other hand, again by the inductive 

x 
hypothesis, also the cluster of y computed for ~bA~'+(r/,s).v must have 
diameter greater than Lj_~. Therefore, by construction, q s+ l (y )=  

Aj~, + x 
qS.,j (r/,)(y), since the random flow ~Aj~+ sets all clusters with diameter 

greater than L s_ 1 equal to plus one. The lemma is proved. 
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4. A B S E N C E  OF E R G O D I C I T Y  IN  INFINITE V O L U M E  AT 
L O W  T E M P E R A T U R E  

In this section we apply the result of Theorem 2.3 to prove that the 
SW dynamics on the whole lattice Z a is not ergodic at low temperature. 
Contrary to the case of short-range attractive Glauber dynamics as in the 
Metropolis or the heath bath algorithms, where the nonergodicity is easily 
proved using the attractivity of the dynamics, the problem of the ergodicity 
of the SW dynamics in the infinite volume at zero external magnetic field 
is not trivial and, moreover, in order to be well defined, it needs a prescrip- 
tion for the updating of clusters of infinite size. In fact, when a constant 
external field is applied, then any infinite cluster will flip in the direction of 
the field with probability one; obviously this is no longer true in the 
absence of the field. The prescription for the updating of an infinite cluster 
depends on course on which of the various Gibbs states of the Ising model 
at low temperature we choose as a candidate for the invariant measure for 
our dynamics. For  example, if we decide that any infinite cluster is set 
equal to plus one with probability p e I-0, 1], then it is natural to ask 
whether the invariant measure /~  of the dynamics in Z 2 (if it exists) is given 
for fi large by 

p~ = p#+ + (1 - p ) # _  (4.1) 

where #+ and kt_ are the extremal states of the two-dimensional Ising 
model. 

We will prove below that this is not the case for p r  more 
precisely, we will show that for p r 1/2 it is possible to find two different 
initial configurations a and r/ such that E0r,(0)) = 0 and I(Er/,(0))l > c > 0 
for any integer time t and a suitable constant c depending on ft. It is clear 
that such a result cannot depend only on the local properties of the 
dynamics, but that it involves a control of the dynamics arbitrarily far 
away from the origin uniformly in the time t. 

Let r /and ~r be given by 

~/(x) = 1 Vx ~ Z a 

a ( x ) = ( - 1 )  ~ with d(O,x )~( (k -1)2 ,  k2], k = 2  .... 

and let P({(s, C ) =  1 )=  1 - p  whenever d iam(C)=  m. Then we have the 
following result. 

Theorem 4.1. There exists flo < m such that for any fl > flo and any 
p 6  [-0, 1] there exists c(fl, p)~  (0, 1) with l i m , ~  c(fl, p ) =  12p-  11 such 
that 

(a) [EOb(O))[ ~> c(fl, p) Vt 

(b) IE(,rt(0())l = 0 v t  

822/66/5-6-6 
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ProoL (a) We write 

I(Er/t(0))t = I ( P - ( 1  - p ) ) [  P,(diam(C(t- 1/2, 0 ) ) =  oo) (4.2) 

and the result then follows from Corollary 2.1. 

(b) For  simplicity we only describe the two-dimensional case. Using 
(4.2), it is sufficient to prove that P~(diam(C(t-1/2,0))=oo)=O for 
any t. Let us assume that for any s<~t-1/2 and any x e Z  d, 
P~(diam(C(s,x))=oo)=O; let us fix k>> 1; and let Ak be equal to the 
anulus {x; Hxll ~ [ ( k - 1 )  2 +k/4, k2-k/4]}.  Then it is not difficult to see, 
by the same methods used in the proof of Lemma 2.3 and 3.1, that we can 
couple the dynamics starting from a in the whole lattice Z d with the 
dynamics in Ak with (1/2, 1/2) b.c. in such a way that if the latter did not 
have a path of vacant bonds of length greater than k/2t before time t, then 
up to time t - 1 / 2  the two dynamics are identical for all x in Ak with 
dist(x, OAk)>k/4, Since the starting configuration a is homogeneous 
inside Ak, we can use Theorem 2.2 to get that the probability for the above 
event to happen tends to 1 as k ~ oo for t fixed. 

In conclusion, for k large enough depending to t, for each time s less 
than or equal to t -  1/2, it is possible to find with large probability a path 
7k(S) inside Ak at a distance from its boundary greater than k/4 of nearest 
neighbor sites xl ,  X2 . . . .  encircling the origin with as(xi)= as(xj). The same 
is of course true for k + 1. Since, however, the value 6f a at time t = 0 inside 
Ak is equal to minus the value of ~r inside Ak+~, then with probability 
greater than (1/2) t, we can impose that for each s less than t, the value of 
a attained in the sites belonging to the path 7k(S) is opposite to its value 
in the sites belonging to the path 7k+ l(s). Thus, with probability one, for 
any given k0, it is possible to find an integer k>ko and two paths 
of nearest neighbor sites 7k and 7k+~ inside A k and Ak+ ~, respectively, 
encircling the origin, on which the configuration at assumes opposite 
values. Thus, for any x s  Z d, P(diam(C(t, x ) )=  o o ) = 0  and (b) follows. 

R e m a r k  1. It would be interesting to generalize the above results to 
different initial conditions, e.g., spin configurations with a density of spin 
flips either very low or very high. This does not seem to be a trivial 
question, since already for a chessboard spin configuration in two dimen- 
sions it is not clear whether the dynamics is able to create in a finite time 
an infinite cluster already at zero temperature. 

We conclude this section with two positive results concerning the long- 
time behavior of the probability distribution of the algorithm at time t in 
two dimensions. The first says that, starting from a configuration identi- 
cally equal to plus or minus one, the time distribution converges weakly to 
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the right mixture of the extremal states, while the second states that the 
convergence holds no matter which starting configuration we choose, 
provided that we consider the dynamics given by the (1/2, 1/2) rule. 

T h e o r e m  4.2. Let r/t denote the evolution at time t according to 
the (p, 1 - p )  rule in two dimensions, where r/is identically equal to either 
plus or minus one. Let A be a cylindrical event. Then for fl large anough 
we have: 

(a) limt~o~ P(q,~A)=p#+(A)+(1-p)#_(A).  

(b) There exists to(A) such that }'or any t>to(A) and some 
positive m 

[P(q ,~A) -pp+(A) - (1 -p )#  (A)]~<exp(--mt ~) 

where c~ is as in Theorem 3.1. 

T h e o r e m  4.:3. With the same notations as in previous theorem, let 
p be equal to 1/2. Then we have: 

(a) l im,~P(a,~A)=�89 l# (A), Vo'e{-1, +}z2. 

(b) There exists to(A ) such that for any t>to(A) and some 
positive m 

J P(a,  ~ A) -- �89 + (A) - �89 _ (A)1 ~< exp( - mt ~) 

where e is as in Theorem 3.1. 

Proof of Thoorom 4.2. Let Lg and t k be the usual length and time 
scales, let k o be so large that the event A depends only on the spins inside 
Ak0_ 1, and let t be such that t k< t<~tk+  1 for some k > k o + l .  By our 
standard coupling technique (see Lemmas 2.3 and 3.1), we can couple the 
(p, i - p )  rule in the full lattice and the dynamics in A~ 1 with (p, 1 - p ) -  
b.c. starting from r/ in such a way that if for both dynamics any site x of 
the box Ak_ 1 and any s ~ t either diam(Cs(x)) < Lk 2 or x belongs to the 
infinite cluster (boundary cluster), then a time t they must coincide inside 
the box Ak0. Using Theorem 2.2, we find that the probability for this not 
to happen is bounded from above by 

1 
tk+l(2L~ i)2 ,--~--~ exp[--mo(fl)2 k-~]  (4.3) 

Lk 2 

Therefore we immediately get that 

1 
IP(r/,~A) ~,  Ak ~ - - r t q ,  - eA)l  <tk+l(2Lk_l)2,--gT-~exp[--mo(fl)2 ~-2] (4.4) 

Lk 2 
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Moreover, using Theorem 3.1, we have 

IP(t/~ k t~A)--pl~A+k 1(A)--(1--p)  #Ak-I(A)I ~2exp[--m(fl)t ~] (4.5) 

with e as in Theorem 3.1. 
Thus, part (a) follows from the triangle inequality and the standard 

fact that 
]#~k I(A)_#+(A)[  <exp[--c(fl)Lk_,] 

as k -~ oo and the same for /~A~ 1. 

Part (b) follows from the above explicit bounds. 

Proof of Theorem 4.3. The proof is almost identical to the proof of 
the previous theorem, although some care has to be paid to the coupling 
argument. Let ko and k be as in proof of Theorem 4.2 and let, for s > t~_ ~, 

be the evolution at time s in the box Ak_~ of the configuration a,k_l 
according to the dynamics which sets the sign of all clusters with diameter 
greater than L k 2 equal to the sign of the cluster of the boundary of the 
box Ak_~. For p = 1 this dynamics coincides with the usual (+ ,  k - 2 ) -  
dynamics. In analogy with Lemma 3.1, let ~21 be the event that, for the 
dynamics in the infinite volume, for any x in A k_ 1 and any s in [tk-1, t] 
either diam(C~(x))~ Lk-2 oer the outermost boundary of C~(x) does not 
intersect the boundary of the box Ak 1; in this last case C,(x) does not 
depend on x in the sense that if diam(C~(y))>Lk_2,  then C~(x)= C~(y) 
(see, e.g., Lemma2.1) and, with an abuse of notation, it will be denoted 
C~. If the event Y21 occurred, then we couple c?~ with the dynamics in the 
full lattice a~ in the usual way, namely: 

(i) Bonds are made vacant at the same time for both, and equal 
clusters which do not touch the boundary of Ak_l do the same 
thing. 

(ii) The sign of the boundary cluster for 8~ is the same as the sign of 
the cluster C~ for a~. 

R e m a r k  2. It is at this stage that p = 1/2 is important. In fact, the 
cluster C~ may or may not be an infinite cluster; however, if p = 1/2, this 
will not affect its probability distribution. 

With this coupling it is easy to prove, following the proof of 
Lemma 3.1, that at time t, 5~(x) = a~(x) for any x in Ako. Thus we get 

2 1 [P(6~e A ) -  P(a~s A)[ < P(Y21) < tk + l(2L k l) ~ e x p [ - m o ( f l )  2k 2] 
(4.6) 

where we used Theorem 2.1 in  order to get the last inequality. 



Low-Temperature MC Cluster Algorithms 1271 

Next we compare P(#teA) with P(aAk-~eA), where a~ k-~ is the 
evolution at time t of ~ in the box Ak_l with the usual dynamics with 
(1/2, 1/2)-b.c. Using (3.5), we get that 

fP(#t~A)-p(~A~-~eA)] < p~_2 < e x p ( - m 2  k-2) (4.7) 

Thus the triangle inequality together with (4.6) and (4.7) yields the analog 
of (4.5) and the rest of the proof is the same as the proof of Theorem 4.2. 

5. EXTENSION OF THE RESULTS TO OTHER M O D E L S  

In this final section we briefly discuss the extension of the ideas and 
results presented in the previous sections to a different model of random 
cluster dynamics introduced in ref. 19, sharing with the SW algorithm 
without external field the property that the updating of clusters of 
dynamical variables (particles in our case) occurs with a probability inde- 
pendent of the geometry of the cluster. The two dynamics are, however, 
very different one from the other; the invariant measure of the SW 
dynamics is the usual Gibbs measure of the Ising model, while the 
invariant measure of the second dynamics in dimension greater than two is 
not the Gibbs state for any absolutely summable interaction. ~19) 

We do this in order to illustrate with a concrete example the genuine 
nonequilibrium character of our techniques and to show that they work 
equally well for a dynamics which is not reversible with respect to an a 
priori probability measure. 

The setting is as follows: at each point x in the box A =  
I - L ,  L]ac~ Z a we associate an occupation variable a(x) with values 0 or 
1; given a configuration at at time t, in order to define the new 
configuration at+l  at time t + 1 we first consider all connected clusters of 
particles (site in which the configuration at is equal to one) and we remove 
each cluster independently with probability 1/2; as a second step we create 
particles in each empty site independently with probability p. 

The above dynamics is similar to a model considered by Swindle and 
Grannan, (21) although in their model clusters disappear with a rate propor- 
tional to their size. We were primarily interested in the long-time behavior 
of the above stochastic cluster dynamics and in particular in questions like 
ergodicity, approach to equilibrium, and mixing properties of the invariant 
measure. In turned out that in order to carry out this program it is crucial 
to have a good control of the range of the interaction, namely of the typical 
size of the clusters. In the one-dimensional case we could prove by means 
of a novel path expansion in space-time that the probability that the origin 
belongs to a big cluster consisting of N particles is bounded by a negative 
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exponential in N for any p e (0, 1 ). As a consequence we can then prove for 
all p the exponential convergence as t tends to infinity of the distribution 
of the process at time t to the unique invariant measure together with the 
exponential decay of correlations of the latter. 

In two or more dimensions the situation changes radically. For  any 
p ~ (0, 1) we prove that the above probability cannot be bounded from 
above by a negative exponential in the number df sites of the cluster. More 
precisely, if pu(t) denotes the probability that the cube QN of side N 
centered at the origin is filled with particles at time t, then we prove that 
for suitable constants cl, c2, e, and e if t >1 elN we have 

PN(t)>~exp(--c2N) Vp> 0  (5.1a) 

1 1 
N~-~>/pu(t)>~-~ if 1 - -p ,~  1 (5.1b) 

However, the question of an upper bound for the above probability for 
small values of p remained open, together of course with the problem of 
existence and uniqueness of the invariant measure in the same range of 
values of p. It is our goal here to fill this gap by stating results very similar 
to those already explained for the SW dynamics; the proofs are, however, 
a duplicate of those given in the previous sections, and we will therefore 
only describe the results and the main ideas. 

Let CA be the collection of all possible connected subsets I of A. Here 
I is connected iff for any two sites x and y there exists a path of nearest 
neighbor sites in I going from x to y. 

Let also {l~(X,S)}x6A,s~ N and {~(I,s)},~CA,s~N be i.i.d, random 
variables with values in {0, 1 } with 

1 P(v(x,s)=l)=p, P(~(t,s)=l)=~ 

For brevity, a realization of the v(x, s) [r s)] variables will be 
denoted by v (4). On each site x of A we will associate an occupation 
variable a(x) taking values in {0, 1}; for brevity the collection of the 
variables (a(x))x~A will be denoted by a. Thus, a is an element of the 
configuration space S = {0, 1 }A. Using the random variables v, 3, we now 
construct on S a random dynamics starting at the configuration a at time 
t = 0 as follows: 

(i) Given o- A e S, we set for any x e A 

o'A+I/z(X) = 1 if aA(x)= 1 and ~(I x, t ) =  1 

where Ix is the maximal element of CA containing x such that aA(y )=  1, 
Vye/ .  
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(ii) For  a n y x ~ A  

a,A+l(x)=0 iff aA+I/z(X)=O and v ( t + l , x ) = O  

For brevity we will refer to part (i) of the updating as the killing of 
particles and to part (ii) as the creation of particles. Note that both 
processes occurs simultaneously (i.e., the updating is parallel) and that the 
nontrivial interaction fo the model is all contained in the killing process. 

We will refer to the above rules as the "basic dynamics in A." The 
associated Markov process will always be denoted by at, omitting the 
suffix A for brevity whenever it does not produce confusion. The time t will 
always take integer values; however, sometimes we will consider events 
involving the values of the process both at time t and at time t + 1/2. 

It is very easy to check that in any finite volume A there exists a 
unique invariant measure, which will be denoted by #A" 

Later, when discussing the approach to equilibrium for the process, we 
will need to compare the dynamics of a given site x produced by two 
different bowes A and A' with A' c A both containing x. This will be done 
by establishing a coupling between the two dynamics according to the 
following rules: 

(a) The variables v(x, S)x~A, are exactly the same variables that one 
chooses for the dynamics in A, i.e., if a particle is created inside 
A' for the dynamics in A, then it is created also for the dynamics 
in A' and vice versa. 

(b) The value of ~(/, s) is the same for both dynamics if I c  A'. 

In some sense the above coupling is the most natural way to restrict 
the dynamics in A to A'. 

In one dimension, however, there is a more efficient way to realize this 
coupling in such a way that the value of the process at a given site x inside 
A' will always be equal for the two dynamics. We will now state a basic 
estimate on the probability that the cluster of a given fixed point x at some 
time t has a diameter greater than L, with t greater than some scale t(L) 
related to L. Let us first fix some notations similar to those used in 
Section 2. 

For  any integer k we define 

p~ = sup P(L, x, t, k, a) 
l>~ L k ; x  ~ AL; t  >~tk;a~ { - -1 .1}AL 

where P(L, x, t, k, a) is the probability that the cluster of particles containing 
the site x has diameter greater than Lk, where L k and tk are as in Section 2. 
Then the following result holds: 
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T h e o r e m  5.1. There exist P0 > 0, c > 0, k o > 0, and a > 0 such that 
for any p < P0 there exists a constant rn -  re(p) with rn > c such that 

1 
pk < ~--~k~ exp(-m2k)  Vk>ko 

C o r o l l a r y  5.1. For p sufficiently small there exists a unique 
invariant measure # for the basic dynamics in Z d such that: 

(a) Given a cylindrical event A, there exists t(A) such that 

IP(trt~A)--#(A)l <exp( - -mt  ~) 

for some positive m and any t >  t(A), where e = ln(2)/ln(3). 

(b) Let f and g be local observables depending only on the value of 
the configuration a(x) for x in A and in B, respectively, with d(A, B)= L, 
and let Ifl oo denote the sup norm. If ( f ;  g )  denotes the expression 

then we have 

( f ;  g} ~< exp[ - rn(p)2 k(/~) ] 

for a suitable positive constant re(p), where k(L) is such that 
L k ~ L < L ~ + I .  

Sketch of the Proof of Theorem 5.1. The proof follows step by step 
the proof of Theorem 2.2 with the simplification that now it is much more 
straightforward to prove that the pieces of the cluster inside the boxes A 1 
and A2 have been created by the dynamics independently one from the 
other. Lemmas 2.1 and 2.2 are in fact no longer necessary and, more 
important, there is no longer any need to define the analog of the random 
variables {'(s, C). 

Sketch of the Proof of Corollary 5. I. Part (a) is proved in a very 
similar way to the proof of Theorem 4.3: 

(i) One first shows, following the proof of Theorem 3.1, that in a 
finite cube of side L two arbitrary initial configurations become identical 
after a time 

t(L) = exp [ln(3) \ ln(4)  j(ln(L)~l/Zq] 
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with large probabil i ty (as L ~  oo) and thus one establishes a fast 
convergence to equilibrium. 

(ii) Using Theorem 5.1, one then proves that  locally the dynamics at 
at time t in the infinite lattice is, with probabil i ty tending to one as L ~ oo 
uniformly in the initial configurat ion a, identical to the dynamics in the 
cube of side L starting at time t -  t(L) from at(L), provided that  t > t(L) 
and 

t(L) = exp [ l n ( 3 ) ( l n ( L ) ) 1 / 2 ]  
\ l n ( 4 ) ]  J 

(iii) By combining (i) and (ii), one approximates  the average at time 

t > e x p [  ln(3)(ln(L)'~v2]\l-~] J 

of a local observable with its average with respect to the equilibrium 
measure associated to dynamics  m the cube of  side L, with an error that 
tends to zer as L ~ oo uniformly in the initial configurat ion a. 

(iv) Step (iii) immediately implies the convergence as t ~ oo of the 
average at time t of  any local observable uniformly in the initial configura- 
tion and thus also the uniquiness of  the invariant  measure. It also follows 
that  the finite-volume equilibrium measure converges weakly to the 
invariant  measure of the process in the infinite volume. 

Par t  (b) follows simply by the explicit bounds  that one has in the 
previous step. 
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